sábado, 30 de abril de 2011

3.3 Transformada de la place de funciones basicas




3.2 Condiciones Suficientes de existencia para la transformada de Laplace

Condiciones suficientes para la existencia de la transformada de Laplace para eq017 de una función cualquiera:
  1. Estar definida y ser continua a pedazos en el intervalo eq018
  2. Ser de orden exponencial eq019

UNIDAD III.- TRANSFORMADA DE LAPLACE 3.1 Definición de la Transformada de laplace



La transformada de Laplace de una función f(t) definida para todos los números positivos t ≥ 0, es la función F(s), definida por:
F(s)
  = \mathcal{L} \left\{f(t)\right\}
  =\int_{0}^\infty e^{-st} f(t)\,dt.
siempre y cuando la integral esté definida. Cuando f(t) no es una función, sino una distribución con una singularidad en 0, la definición es
F(s)
  = \mathcal{L} \left\{f(t)\right\}
  =\lim_{\epsilon \rightarrow 0} \int_{-\epsilon}^\infty e^{-st} f(t)\,dt.

Cuando se habla de la transformada de Laplace, generalmente se refiere a la versión unilateral. También existe la transformada de Laplace bilateral, que se define como sigue:
F_B(s)
  = \mathcal{L}\left\{f(t)\right\}
  =\int_{-\infty}^{\infty} e^{-st} f(t)\,dt.
La transformada de Laplace F(s) típicamente existe para todos los números reales s > a, donde a es una constante que depende del comportamiento de crecimiento de f(t).